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Spin-stabilized projectiles with liquid payloads can experience a severe flight 
instability characterized by a rapid yaw-angle growth and a simultaneous loss in spin 
rate. Laboratory experiments and field tests have shown that this instability 
originates from the internal fluid motion in the range of high viscosity. After 
evaluation of the experimental data and analysis of the equations for the fluid motion 
in a spinning and nutating cylinder, we have developed a simple model of this flow. 
Disregarding the finite length of the cylinder, this model provides the flow field and 
the viscous contribution to the liquid moments in analytical form. A t  low Reynolds 
number, the flow field agrees well with computational results for the centre section 
of a cylinder of aspect ratio 4.3. The roll moment caused by this flow largely agrees 
with experimental data for a wide range of Reynolds numbers. Estimates of the 
temperature variation indicate that discrepancies at very low Reynolds numbers may 
originate from associated changes of the viscosity during the experiments. 

1. Introduction 
It is well known that spin-stabilized shells carrying liquid payloads can suffer 

dynamical instability. For cylindrical cavities and low viscosity of the liquid, the 
instability due to basically inviscid inertial waves can be predicted by the Stewartson- 
Wedemeyer theory (Stewartson 1959; Wedemeyer 1966). This theory rests on the 
boundary-layer approach and is, therefore, restricted to the range of sufficiently large 
Reynolds numbers. The instability of certain shells like the XM761 (D’Amico 1977; 
1978), however, escapes such a prediction and is also distinguished in character owing 
to the rapid loss in spin rate. Experiments with a full-scale liquid-filled cylinder (Miller 
1982) and subsequent field tests (D’Amico & Miller 1979) establish that this new flight 
instability is most pronounced for liquid fills of very high viscosity. 

We conduct a theoretical analysis of this problem in order to support the ongoing 
experiments and to independently obtain insight into the anatomy of the flow 
phenomena. The initial steps of this analysis are reported elsewhere (Herbert 1982) : 
evaluation of the experimental database, dimensional analysis, scaling aspects, 
governing equations, and discussion of various simplifying assumptions. Two observa- 
tions in this earlier work led to the approach discussed in the following. First, if the 
despin (negative roll) moments (Miller 1982) and void observations (Miller 1981) are 
correlated with the Reynolds number Re, at least three regions can be distinguished. 
At low Re, the despin moment increases proportional to Re, and the void in a 
partially filled cylinder is parallel to the spin axis. This suggests a simple fluid 
motion that is essentially independent of the axial coordinate, except in the 
neighbourhood of the end walls. In a middle range of Re, the despin moment assumes 
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FIQURE 1. Definition sketch. 

a maximum, and a wavy distortion of the void seems to indicate a cellular structure 
of the fluid motion. This cellular motion can, in principle, originate from hydrodynamic 
instability of the basic flow with respect to axially periodic disturbances. At still 
higher Reynolds numbers, the despin moment decreases with increasing Re in a 
manner not clearly defined by the few available data points. The void observations 
indicate, however, that the motion ultimately becomes turbulent. 

The second observation is the appearance of the nutation rate and angle as a small 
parameter in the equations for the deviation from solid-body rotation. The forcing 
term due to nutation can be considered small enough for linearization of the equations 
in the situations of practical interest. 

In  the following, we describe the development of a simple system of equations for 
the basic flow. Analytical solutions are given for the flow field, for the liquid moments, 
and for the rate of change of temperature. A comparison is made with computer 
simulations of the flow (Vaughn, Oberkampf & Wolfe 1983; 1985) and with 
experimental data for the moments (Miller 1982). 

2. Governing equations 
We consider the motion of a fluid of density p and viscosity /I in a cylinder of radius 

a and length 2c that rotates with the spin rate w about its axis of symmetry, the z-axis. 
We consider the motion with respect to the nutating coordinate system x, y, z. This 
system is obtained from the inertial system X, Y, 2, by a rotation with the nutation 
angle 0 about the axis Y = y. Therefore, x is in the (2, %)-plane, and this plane rotates 
about the Z-axis with the nutation rate 51. The two axes of rotation intersect in the 
centre of mass of the cylinder, as shown in figure 1. We consider w > 0, 51, and 
0 < 0 < fi as constant. This is in some contrast to the experimental procedures for 
measuring the despin moment (Miller 1982). In these experiments, the apparatus is 



Viscous fluid motion in a spinning, nutating cylinder 183 

held at constant conditions until a steady (or quasi-steady) flow is established. After 
shut-down of the spin drive, the decrease of w as a function of time is recorded in 
order to obtain the roll moment. 

The fluid motion is governed by the Navier-Stokes equations written in the 
nutating coordinate system : 

p [%+ 2 9  x v, + sh x (sh x r )  = - VP, +pv2 v,, 1 ( l a )  

(1b)  v .  v, = 0. 

V, is the velocity measured in the nutating frame, P, the pressure, and r the position 
vector. The body force due to gravity has been disregarded. Equations (1)  are subject 
to the no-slip and no-penetration conditions at the cylinder walls. 

It is convenient (Herbert 1982) to split the velocity and pressure fields according 
to 

vn = v s  + vd, Pn = ps + p d ,  (2) 

where V,, P, describe the state of pure solid-body rotation, whereas v d ,  Pa represent 
the deviation from solid-body rotation. The advantage of this isolated view on the 
deviation is obvious: v d  and the reduced pressure Pd are responsible for the observed 
flight instability. A glance at the equations shows that v d  3 0 and Pd = 0 if either 
one of the following conditions is satisfied: w = 0, i2 = 0, 8 = 0 or p+ 00 (solid fill). 

The equations for v d ,  Pd are written in terms of non-dimensional quantities vd, pa. 
We use a , w ,  and p for scaling length, time and mass. Note that this choice is 
ambiguous (Herbert 1982) and excludes the case w = 0 which lacks practical interest. 
The problem then depends on four non-dimensional parameters : 

A = - aspect ratio, 
C 

a 

0 nutation angle, 

sz 
7 = - frequency, 

w 

pwa2 

P 
Re = - Reynolds number. 

The aspect ratio enters the solution only through the boundary conditions. The 
boundary conditions on vd are homogeneous. 

In cylindrical coordinates r,  #, z, the equations for the non-dimensional deviation 
velocity ad = (ff,, w4, w,) and pressure pd take the form 
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and 
7, = - E  cosq5, 7$ = E sin#, T,  = T cos8, E = r sine. (4) 

The primary effect of nutation is contained in the #-periodic force term 
- 2r7, = 2er cos q5 in the z-momentum equation (3d). If this term vanishes throughout, 

E = 0, equations (3) support a trivial solution od = 0, p d  E 0. 
The system (3) of equations is similar to the system numerically solved by Vaughn 

et al. (1983; 1985), but simplified by introducing the reduced pressure p,. We also 
note that this system supports certain symmetries. Let v,, v4, v, andp, be the solution 
at point r ,  q5,  z ,  then the velocities and pressure a t  the corresponding point 
r ,  $+a, -z are v,, v4, -v, and p d .  These symmetries can be exploited for essential 
savings in computational work. 

2.1. Linearized equations 

For sufficiently small E + 0, it  is obvious that the deviation velocity is of order O(c) .  
I n  the situations of practical interest, E = (a/@) sin 8 turns out to be a rather small 
parameter. Even a conservative estimate with a < 500 r.p.m., w 2 3000 r.p.m., and 
8 < 20’ provides values of E < 0.057. Consequently, i t  seems well justified to linearize 
the equations in E .  This linearization imposes no restriction on the Reynolds number. 

While the continuity equation remains unaffected, linearization of the momentum 
equations provides 

D*v,-2(1+7,)~ 

D*v4+2(1+7,)v, 

1 
2 ~ 7  l‘ +- Re D”v,. D*v, = aZ 

where 
a a  
at a # -  D* = -+- 

The system (3a), (5a)-(5c) of equations is still quite difficult to solve. Any serious 
attempt to satisfy all boundary conditions leads directly to a purely computational 
approach. Use of the boundary-layer approximation would simplify the task but 
seems inappropriate in the interesting range of low Reynolds numbers. 

3. The core flow 
We recall that  the flow in a relatively long cylinder (aspect ratio h = 4.3) a t  low 

Reynolds number is expected to  have a rather simple structure and to  provide a roll 
moment proportional to  Re (Herbert 1982). Closer analysis of the equations suggests 
that  this flow exhibits little axial variation over much of the cylinder length. The 
effect of the end walls will be essential only over an axial distance of O(1) from the 
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ends. Therefore, we have relaxed the boundary conditions at the end walls. In this 
way, we seek a steady flow in a finite segment of an infinitely long cylinder. 

The z-independent force term in ( 5 c )  can be balanced only by a purely axial 
deviation velocity. It is consistent with the linearized equations to assume a solution 
in the form 

vd = (0, 0, v ~ ) ,  pd = 0. (6) 

(7) 
wheref and g are the imaginary and real parts, respectively, of the complex function 

F(r)  = g(r) +if (r ) .  (8) 

Moreover, since v, is of order O ( E )  and periodic in 4, we write 

v, = vz(r, 4) = 2 ~ [ f ( r )  cosgl+g(r) sin$], 

Substituting (6)-(8) into the linearized equations and the no-slip conditions at the 
cylinder wall provides 

r2F"+rF'-(l+i Rer2) F = -i Rer3, ( 9 4  

F = O  at r = 1 ,  (9b) 

F finite at r = 0, (94  

where (9c) is necessary for a physical solution. The primes denote d/dr. 

3.1. Solution for Re+O and Re+co 
For Re+O, the solution of (9) can be found in the form of series expansions in Re, 

f = ifRe(r - 9)  -& Re3 (7r - 123 + 6r5 - r') + O(Re5), 

g = & Re2 (2r-3r3+r5)+O(Re4). 

(10a) 

(10b) 

With higher terms included, these series converge for Re < 12. 
In the limit Re+ a, one obtains 

f+O,  g+r ,  as Re+co. (11) 

Owing to the loss of the highest derivatives, however, this solution cannot satisfy the 
boundary conditions (9b) and is valid only outside thin boundary layers near the wall 
a t r = l .  

Even without any knowledge of the solution in the intermediate range, the different 
character of the basic flow at low and high Reynolds numbers is evident. At low Re, 
the component f in the (2, 2)-plane 9 = 0 dominates the solution. At high Re, f is 
negligible except near the wall of the cylinder while g in the ( y ,  2)-plane q5 = 90" is 
dominating. One might well expect that the initial linear increase off with Re and 
the change in the flow structure is related to the observed properties of the roll 
moment. 

3.2. Solution for arbitrary values of Re 
In earlier work (Herbert 1983), we have applied a spectral collocation method for 
numerically solving a real system of equations for f and g equivalent to (9). Series 
in odd Chebyshev polynomials for the interval 0 < r < 1 provide accurate solutions 
at rather low truncation. This experience together with the minor effect of harmonics 
in the azimuthal direction at small E suggests the use of spectral methods for efficiently 
solving the nonlinear equations (3). 

Here, we derive an analytical solution for the core flow in a sufficiently long 
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FIQURE 2. Componentsf and g of the axial velocity vJ(2e) for various Reynolds numbers: 
0, Re = 1; 0,  10; A, loz; +, loa. 

cylinder. A particular solution of the inhomogeneous equation (9a) is F, = r ,  whereas 
the homogeneous part of (9a) is the equation for the modified Bessel functions Il(qr) 
and K,(qr) of the complex argument qr where q = (1  + i) (!jRe)f. In order to satisfy (Sc), 
Kl(qr) cannot contribute to the solution. Finally, (9b) provides 

This solution is valid for arbitrary Re but may be unstable as Re exceeds some critical 
value. Although expressible in simple form, the resulting flow field exhibits very 
interesting properties. 

Rewriting the solution in terms of Kelvin functions of real argument is of little 
advantage for the numerical evaluation. We have used a combination of ascending 
series and asymptotic expansions for large arguments (Abramowitz & Stegun 1972) 
for evaluating P(r) .  With the solution (12) at hand, it is straightforward to derive 
the approximations (10) from the ascending series for I, (and to explain the 
convergence problem for larger Re). Complementary to (1  l ) ,  the asymptotic expansion 
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FIGURE 3. Contour lines of the components f and g of the axial velocity vz/(2e) as a function of 
radius r and Reynolds number Re. Intervals are 0.05; the zero level is given by the heavy line. 

for large arguments, i.e. large Reynolds numbers provides the boundary-layer 
bchaviour 

(13) F x r - eQ(r-1). 

This expression agrees to within 1 % with (1  1) provided r < 1 - 6. The boundary-layer 
thickness 6 can be obtained from the transcendental equation 

6 = (2/Re)1[4.605-81n(l-6)], (14) 

e.g. 6 = 0.223 for Re = 1000. 

3.3. The velocity Jield 
We have chosen three different graphical representations in order to illustrate the 
characteristic changes of the velocity distribution over the cylindrical cross-section 
with increasing Re. Figure 2 shows the components f (in the (2, %)-plane) and g (in 
the ( y ,  2)-plane) for a wide range of Reynolds numbers. The opposite sign of the 
velocity a t  diametral points assures zero net flux of mass through the cross-section. 
The curves represent cuts through the contour plots of these functions of r and Re 
in figure 3 a t  the tick marks Re = 1, 10, 100 and 1000. Up to Re x 5, the velocity 
distribution is governed by f. This component never exceeds a value of 0.4, assumes 
a maximum at Re x 20 and retains significant size only in a shrinking ncighbourhood 
of the wall as Re increases. The component g rapidly increases from negligible values 
as Re > 5 and approaches the linear increase with r according to (11) except near 
the wall at r = 1. In figure 4, the data of figure 2 are combined into contour plots of the 
axial velocity v J ( 2 ~ )  over the cylindrical cross-section. These plots clearly show the 
shift of the velocity maximum (marked by + )  from 4 x 0 at Re = 1 to 4 x 90' at 
Re = 1000. Figure 4 (d )  also illustrates the ramp-like velocity distribution over most 
of the cross-section and the boundary layers with 6 = 0.223. 

Superposition of the deviation velocity V, and the solid body rotation V, according 
I PLM 167 
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x(Q = 0) x(Q = 0) 

FIGURE 4. Contour lines of equal axial velocity vZ/(2e) = const., for (a) Re = 1; ( b )  10; (c) lo2; 
( d )  lo3. Intervals are 0.01, 0.1, 0.2, 0.2, respectively. The zero level is given by the heavy line, the 
velocity maximum is marked by + . 

to (2) leads to an azimuthally periodic velocity field V,  which is steady in the nutating 
frame. The paths of fluid elements are circular orbits about axes that are inclined 
to the z-axis. The inclination depends on radius and Reynolds numbers. 

Figure 5 compares the dimensional velocity distributions obtained from (7), (12) 
with computational results for the centre cross-section ( z  = 0) of a cylinder of aspect 
ratio 4.3.t The agreement for Re = 14.9 is considered representative for the range 
of lower Reynolds numbers. We have repeated the numerical simulation of the flow 
at this Reynolds number with a modified version of the Sandia code and obtained 
very small components IVJ < 0.005 m/s, ly41 < 0.05 m/s at z = 0. These results verify 
our estimates and justify the use of linearized equations. Moreover, disregarding the 
presence of endwalls seems to have little effect in the centre portion of the cylinder. 
The radial distribution of V, in the range - 3.5 < z < 3.5 is nearly identical with the 
data shown in figure 5. 

t The data were kindly provided by H.  R.  Vaughn, Sandia National Laboratories. 
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FIQIJRE 5. Radial distribution of the dimensional velocity V, at z = 0 for Re = 14.9. The symbols 
show the numerical solution to the Navier-Stokes equations (Vaughn 1983, personal communication). 
Parameters: a = 60.3 mm, c /a  = 4.3, 0 = 20°, w = 3000 r.p.m., L2 = 500 r.p.m., p = 1400 kg/m3. 

Figure 6 shows a similar comparison for Re = 45.7. A t  this higher Reynolds 
number, we find a systematic deviation between the theoretical result and numerical 
results at  different axial positions. We attribute this deviation to a superposed cellular 
motion that is not incorporated into our analysis. 

4. Moments 
Considering that a solid payload, or a liquid payload in pure solid-body motion, 

would allow for a stable flight of a projectile, we can fully concentrate on the moments 
caused by the deviation velocity vd. With vd = ( O , O ,  oav,) and v, given, the 
moments on a finite-length section of the cylinder can be calculated. We consider a 
control volume R (surface 8) formed by the solid cylindrical wall and liquid surfaces 
at both ends. The choice of a solid wall as the cylindrical boundary is important for 
capturing the roll moment. Conservation of angular momentum requires 

1-2 
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FIQURE 6. Radial distribution of the dimensional velocity V, at z = 0 for Re = 45.7. The symbols 
show the numerical solution to the Navier-Stokesequations (Vaughn 1983, personal communication). 
Parameters: a = 60.3 mm, c /a  = 4.3, 0 = 20°, w = 3000 r.p.m., a = 500 r.p.m., p = 1400 kg/m3. 

where n is the outer unit normal. On the left-hand side, M is the resultant torque 
on the control volume. Note that the shear moment vanishes at the solid sidewall while 
the contributions from the liquid end surfaces cancel. On the right-hand side, the first 
term vanishes for steady Vd. The second term originates from Coriolis forces in the 
nutating system. The third term vanishes since Vd has only an axial component. The 
last term provides the net rate of angular momentum flux through the control surface. 

Substitution of V,  leads to the following expressions for the Cartesian components 
of M :  

1 

M ,  = m1(252 a sin 8) (wa)  m,, m, = - Jo r2f dr, ( 1 6 4  

1 
Mu = m1(252 a sine) (wa) my, m, = -j r2g dr, (16b) 

0 

M ,  = m1(252 a mz, m, = 2' 

where m, = 27cpa2c is the liquid mass in the cylinder. In  this form, the components 
M,, M y  represent the net rate of angular momentum flux through the liquid ends, 
whereas the roll moment 2M, is solely due to Coriolis forces. A close relation between 
roll moment M, and yaw moment M ,  has also been found by Murphy (1984, 1985). 
Note that  M,, M y  after division by m1w2a2 clearly are of order O(E) .  M,  however is 
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FIQURE 7. The non-dimensional coefficients mz, my in (17) us. the Reynolds number Re. 

of order O(e2), and the question arises whether (16c) will be affected by second-order 
terms. Analysis of higher-order approximationst indicates, however, that (16 c )  is 
correct to within 0 ( c 2 ) .  

A different physical interpretation of the moments can be derived using the 
differential equation (9a), integrating by parts, applying (9b), and separating real and 

In this form, the moments are directly related to the shear forces at  the cylindrical 
sidewall, T = 1. Sincef( 1 )  < 0, g’( 1) < 0, the roll moment M ,  is always positive (even 
for 52 < 0), while M ,  is negative for R > 0 and changes sign with 9. For small Re, 
the series (10) provide the approximations 

Re Re2 
96 mux--1536’ m , x - ,  

that can be used for quick estimates up to Re < 10. The linear increase of m, and 
M ,  with Re is consistent with the experimental data. From the analytical solution 
(lo), we obtain 

QIO(Q) F’(1) = g’(l)+if(l) = 2-- 
Il(d * 

(19) 

t Detailed results for higher-order approximations will be published elsewhere. 
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FIQURE 8. Comparison of the theoretical result for m, with: x , experimental data (Miller 1982); 
0, computational results (Vaughn et al. 1985). The straight line shows the asymptotic law 
m, z Re/96. 

Substitution into (17) provides the variation of m,, my with the Reynolds number 
shown in figure 7. The coefficient m, assumes a pronounced maximum at  Re x 19. 
The occurrence of this maximum was earlier thought to originate from hydrodynamic 
instability with respect to  a cellular motion. Here, we find a simple explanation in 
the properties of the axial velocity componentfin the (z, 2)-plane and the derivative 
g’(1). The coefficient my is negligible for Re < 5 ,  sharply decreases with increasing Re 
and reaches an asymptotic value of my +-i as Re+ 00. Hence, for SZ > 0, My tends 
to reduce the pitch moment due to  the solid body rotation. We note, however, that  
these moments represent only the effect of viscous shear a t  the cylindrical sidewall. 
Shear at the endwalls and the contribution of the pressure are neglected. 

The data base for the yaw and pitch moments is scarce. Computations by Vaughn 
et al. (1985) indicate, however, that the pressure contributions to these moments are 
larger (and opposite in sign) than the viscous components. Only the viscous 
component can be estimated from our solution. Therefore, we concentrate in the 
following on a detailed comparison for the roll moment. 

I n  figure 8 we compare the asymptotic law (18) and the theoretical result (17) with 
experimental data (Miller 1982) and computational results (Vaughn et al. 1985) for 
the roll coefficient m, on a doubly logarithmic scale. The initial spin rate 
w = 4000 r.p.m. has been used for obtaining the non-dimensional values from the 
experiment. For Re < 10, the experimental data match the analytical result as well 
as the asymptotic law m, x & Re. The deviation between theoretical and computa- 
tional results is probably due to a larger axial extent of the end effects a t  very low 
Reynolds numbers. Good agreement with the computational results is obtained near 
the maximum of m,. The point a t  Re = 113 is close to the Reynolds number where 
the numerical simulation fails to converge to a steady solution, and may not be very 
accurate. The experiments find the maximum roll moment a t  slightly lower Reynolds 
numbers than the theoretical value. In  fact, this discrepancy will increase as lower 
spin rates w are used for data reduction. I n  view of the agreement between theoretical 
and computational results, the discrepancy cannot arise from the approximations 
employed in our analysis. A first possible source may be the effect of unsteadiness 
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FIGURE 9. Comparison of the theoretical result for the roll moment Mz at w = 3000 r.p.m. us. 
kinematic viscosity v with: x , experimental data (Miller 1982) for w = 2oo(t4000 r.p.m. ; 
0, computational results (Vaughn et al. 1985) for w = 3000 r.p.m. Parameters: a = 60.3 mm, 
c /a  = 4.29, 0 = 20", l2 = 500 r.p.m., p = 1000 kg/m3. 

in the spin-down experiments. More likely, however, the shift is caused by changes 
of temperature and viscosity during the experiments. A moderate increase in 
temperature would reduce the viscosity of the working fluids (silicone oil, corn syrup) 
and hence shift the maximum to higher Reynolds numbers. Miller (personal 
communication) observed a temperature increase by x 2.5 "C per run up to  w 10 "C 
above ambient temperature after repeated runs. Vaughn et al. (1985) used these values 
for correcting the results, with some improved agreement. We waive such a correction 
but discuss the temperature increase in more detail in the next chapter. 

As a final observation in figure 8, we note the change in tendency for the two 
experimental data points a t  Re > lo3. It is likely that the internal flow becomes 
unsteady and ultimately turbulent as the Reynolds number increases. Preliminary 
results from flow visualization in a small-scale experiment (Pierpont 1985) indicate 
that these two points are for a turbulent internal flow. 

In  figure 9 we recast experimental, computational and theoretical results for the 
dimensional roll moment M ,  in different form. Whereas the asymptotic properties 
are concealed, the linear scale for M ,  reveals the pronounced maximum of the roll 
moment for viscosities near u = lo3 St and more clearly indicates that  theory and 
computation yield larger maximum values than the despin experiment with the old 
test fixture (Miller 1982). More recent measurements with a new test fixture at higher 
spin rates (Miller, personal communication) provide larger maximum values slightly 
in excess of the theoretical result. 

For the roll moment as a function of nutation angle and rate, Herbert (1983) 
derived from Miller's data (1982 figure 12) the empirical relation M, = 0.00814 
(0 sin 0)2 N m. The theory provides M ,  in the same form but with a somewhat larger 
factor of 0.0111. This comparison for a fluid of kinematic viscosity u = 2.105 cSt is 
likely to  be biased by temperature effects. A notable feature of the roll moment as 
a function of nutation rate at different spin rates is shown in figure 10. For these 
parameters in the range of the maximum roll moment, the dependence of M ,  on w 
is non-monotonic, e.g. the data for w = 9000 r.p.m. are in between those for w = 3000 



194 

3 

Th. Herbert 

0 1 2 3 4 5 6 I 

R(1O2 r.p.m.) 

FIGURE 10. Theoretical results for the roll moment M, v8. nutation rate a for different spin rates: 
A, w = 3000; 0,  6000; 0, 9000 r.p.m. Parameters: a = 50.4 mm, c/a = 4.5, 0 = 20°, v = lo3 St, 
p = 1000 kg/m3. 

3 

0 2 4 6 8 10 

w(103 r.p.m.) 

FIQURE 11 .  Theoretical results for the roll moment M ,  vs. spin rate w for different kinematic 
viscosities: 0,  v = 10, 0, lo2, A, lo3 St. Parameters: a = 50.4mm, c /a  = 4.5, 8 = 20°, 
a = 625 r.p.m., p = 1400 kg/m3. 

and 6000 r.p.m. This puzzling behaviour has been observed by Miller in experiments 
with the new test fixture. From the theoretical result it is obvious that M ,  decreases 
(increases) with w for sufficiently small (large) viscosities to the left (right) of the 
maximum in figure 9. 

The interpretation of the experimental results has been hampered by the observation 
of Miller (1982) that ‘the despin moment was not a function of the canister spin rate, 
provided a sufficient spin rate is present’. In  contrast, the theoretical result 
(14c), (15a) ,  (19) depends on the spin rate since q - Re4 and Re - w for fixed a and 
v. Figure 11 shows the theoretical results for M, as a function of the spin rate w for 
viscosities v = 10, lo2 and lo3 St on linear scales. Note that in some range of w ,  M ,  
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FIGURE 12. Experimental results for the roll moment M, us. spin rate w for different kinematic 
viscosities: 0,  v = 10; 0, 10'; A, los St. Parameters: a = 50.4mm, c/a = 4.5, 8 = 20°, 
f2 z 600 r.p.m., p = 1400 kg/m3. 

appears indeed nearly independent of' the spin rate, especially tor v = lo3 St 
where the maximum of M ,  stretches out over most of the observed range 
(3000 < w < 9000 r.p.m.) of spin rates. Figure 11 also shows different prototypes of 
behaviour that are distinguished by the position of the maximum roll moment along 
the w-axis. Experimental data for similar conditions are shown in figure 12 and verify 
the theoretically predicted behaviour. Moreover, these data suggest major 
simplifications in the experimental procedures. Whereas the experimental data in 
figure 9 were obtained by using numerous working fluids of different viscosities, a 
more complete set of data can be generated by carefully monitoring the spin-down 
for a few runs with fluids in the range of low, medium, and high viscosities as in 
figure 12. 

5. Temperature effect 
The comparison of theoretical and computational results with experimental data 

seems to be biased by the effect of increasing temperature on the viscosity of the 
working fluid. These effects appear more pronounced at  high viscosities and high spin 
rates. For an estimate of the rate of change of the average temperature T, we consider 
a control volume R (surface 8) formed by liquid surfaces along the cylinder's side 
and end walls. The material properties are assumed to be constant and heat transfer 
through the surface is disregarded. Balancing the rate of change of energy with the 
work done on the control volume, we obtain after some simplifications 

dT 
m c -= sj 7-VidS, ' ' dt S 

where c, is the specific heat, 7 the vector of tangential'stresses, and Vi the velocity 
measured in an inertial frame. Since Vd is independent of z, the contributions from 
the cylinder ends cancel. The only contribution is due to the shear stress 
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in the axial direction. The relevant axial component of the velocity (a x o) x t of some 
point on the surface S is given by - n u  sin 0 sin 9. Integration over the cylindrical 
surface yields 

dT 
mlc,- dt = -p(2SZa sin0)2rcacg'(l). (22) 

After substituting for m, and introducing the Reynolds number, this result can be 
written as 

Comparison with (15a) shows that the rate of change of temperature can be directly 
expressed in terms of the roll moment, 

d T  w w 
- = - (2521.2 sin 1 9 ) ~  m, = - M,. 
dt 2c, 2m, c, 

This result immediately shows that the temperature rise per run cannot be specified 
as a single number, nor should a uniform correction be applied to the experimental 
data. Moreover, the temperature changes increase with the spin rate, and consequently 
are quite different for the experiments with the old (Miller 1982) and the new test 
fixture. Using the maximum value m, x 0.0854, we obtain for the 1982 experi- 
ments (a  = 60.3 mm, w = 4000 r.p.m., SZ = 500 r.p.m., B = 20") with corn syrup 
(c, x 2350 J/kg "C)) a temperature rise of dT/dt = 0.036 "C/s. Using silicone oil 
(c, x 1600 J/kg "C)) in the new test fixture (a = 55.4 mm, w = lo4 r.p.m., 
52 = 600 r.p.m., 0 = 20°) leads to a temperature increase of dT/dt = 0.158 "C/s. 

A single run consists of three phases (Miller, personal communication). The spin-up 
period of x 30 s is followed by a sudden start of the nutational motion and a period 
of x 30 s in order to  reach steady conditions. Finally, the shutdown of the spin drive 
is followed by a spin-down period of x 15 s. The second period a t  nearly steady 
conditions and maximum spin rate appears most relevant to the modification of the 
viscosity. During this period, the kinematic viscosity of corn syrup changes according 
to u = vo exp(-O0.1l9AT), where vo is the nominal kinematic viscosity at the 
beginning of the run. At the start of the third phase, the average temperature may 
have increased by A T  x 1.07 "C, while the viscosity dropped to v x 0 . 8 8 ~ ~ .  
Measurements by Miller indicated that the temperature in the cylinder after repeated 
runs stabilized at A T  % 10 "C above ambient temperature. At this level, the viscosity 
would be reduced to  v x 0 . 3 ~ ~ .  This effect would fully account for the systematic 
deviation between experimental and theoretical data in figure 9. In  the more recent 
experiments a t  higher spin and nutation rates, the average temperature may have 
increased by as much as A T  x 4.75 "C over a period of 30 seconds. The value of 2.5 "C 
measured in the new fixture is well within the estimated range. The temperature effect 
on the kinematic viscosity of silicone oils, however, is relatively small. With 
v = vo exp( -0.014AT), we obtain after 30 seconds v x 0.94v0, and v x 0 . 8 7 ~ ~  with 
A T  = 10 "C after repeated runs. 

6. Concluding remarks 
We have developed a simple model of the viscous fluid motion in a spinning and 

nutating cylinder. The disregard of the end walls has some obvious consequences : 
the turning flow near the ends and the associated contributions of pressure and shear 
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stresses to the moments cannot be obtained from this model. Nevertheless, we gather 
understanding as well as quantitative information. The velocity field of the core flow 
agrees well with computational results for low Reynolds numbers. The analytical 
result is an evident example for the formation of boundary layers. The core flow can 
be utilized as a basic flow in studies of hydrodynamic instability with respect to 
cellular motions. The parametric excitation of such cells by the azimuthally periodic 
deviation has been discussed by Herbert (1984). The core flow also represents the 
lowest-order approximation to the solution of the nonlinear equations (3) and can 
be extended by higher-order terms in E .  

The roll moment agrees well with measured and computed values, and can also 
be found at Reynolds numbers too large for successful numerical simulations. The 
roll moment originates from Coriolis forces. While the direct calculation of the yaw 
moment suffers from neglecting the pressure contribution, the yaw moment can be 
found from the roll moment using the relations given by Murphy (1984, 1985). The 
pitch moment remains an open issue. The estimates for the change in average 
temperature need further verification once more detailed data become available. 

The simple form and scaling relations of our results provide guidance for sorting 
and evaluating the experimental database. The results also suggest various improve- 
ments in the experimental procedures. First, the changes in temperature and 
viscosity should be carefully monitored. With the effective viscosity known, a closer 
agreement between theory and observation is to be expected. Second, the yet 
neglected variation of the roll moment with the spin rate is considered relevant and 
in fact provides the roll moment in some range of Reynolds numbers. Instead of 
producing the data for figure 9 by using numerous viscosities at fixed spin rate, very 
similar data can be generated by varying the spin rate for a few fluids. 

The open cooperation and sharing of data with Miles C.Miller (CRDC) and 
Harold R. Vaughn (Sandia Laboratories) are greatly appreciated. Ri-Hua Li deserves 
credit for his assistance in developing the analytical solution. This work is supported 
by the Army Research Office under Contract DAAG29-82-K-0129 and by the Army 
AMCCOM under Contract DAAKl1-83-K-0011. 
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